
MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

Trusted Key PKI Cryptographic Module

Part No: Trusted-Key-PKI-X15
Firmware Version No: V1.0.11

Developer Guide

Document Version: V1.0

Date: April 6th, 2021

International Copyright© Mobile-ID Technologies And Services Joint Stock Company (Mobile-
IDTM). All rights reserved. This document is the property of Mobile-IDTM. and as such may only
be distributed, partly or in full, in lieu of a non-disclosure agreement (NDA). Permission to copy
and implement the material contained herein is granted subject to the conditions of the
aforementioned NDA and that any copy must bear this legend in full, that any derivative work
must bear a notice that it is a Mobile-IDTM. copyright document jointly published by the copyright
holders, and that none of the copyright holders shall have any responsibility or liability
whatsoever to any other party arising from the use or publication of the material contained
herein.

Ho Chi Minh – 2021

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

Document Revisions

Version Date Description Author

1.0 20210406 First submission KHANHPX

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

Contents

Document Revisions ... 2

Contents ... 1
1. Software Developer’s Agreement .. 1

2. Overview ... 2
2.1. Application Development Interfaces of Trusted Key PKI .. 2
2.2. Development of applications using PC/SC interfaces .. 2

2.2.1. Smart Card Database Query Functions ... 3
2.2.2. Smart Card Database Management Functions .. 3
2.2.3. Resource Manager Handle Functions .. 3

2.2.4. Resource Manager Tool Function.. 4
2.2.5. Smart Card Monitoring Functions ... 4

2.2.6. Smart Card and Reader Accessing Functions ... 4
2.2.7. Direct Card Accessing Functions .. 4
2.3. Development of applications using MS CryptoAPI interfaces .. 5

2.3.1. Information Concealment ... 5
2.3.2. Identity Authentication ... 6

2.3.3. Integrity Check ... 6
2.3.4. CSP and Encryption Process .. 6
2.3.5. CSP Context .. 7

2.3.6. CryptoAPI Architecture ... 7
2.4. Development of applications using PKCS#11 interfaces .. 8
3. CSP Module .. 9

3.1. Description of CSP Module .. 9
3.1.1. Basic Information .. 9

3.1.2. Features ... 9
3.2. Supported Algorithms .. 9
3.3. Function Implementation .. 10

3.4. Parameters of the Functions ... 12
3.4.1. CPAcquireContext .. 12
3.4.2. CPGetProvParam ... 13

3.4.3. CPReleaseContext .. 13
3.4.4. CPSetProvParam .. 13

3.4.5. CPDeriveKey ... 13
3.4.6. CPDestroyKey ... 13
3.4.7. CPDuplicateKey ... 13

3.4.8. CPExportKey ... 13
3.4.9. CPGenKey... 13

3.4.10. CPGenRandom... 13
3.4.11. CPGetKeyParam... 14
3.4.12. CPGetUserKey ... 14

3.4.13. CPImportKey ... 14
3.4.14. CPSetKeyParam ... 14
3.4.15. CPDecrypt ... 14

3.4.16. CPEncrypt ... 14
3.4.17. CPCreateHash ... 14

3.4.18. CPDestroyHash .. 14
3.4.19. CPDuplicateHash .. 14
3.4.20. CPGetHashParam ... 14

3.4.21. CPHashData .. 15
3.4.22. CPHashSessionKey ... 15

3.4.23. CPSetHashParam ... 15
3.4.24. CPSignHash .. 15
3.4.25. CPVerifySignature .. 15

3.5. Description of Function Calling .. 15
3.5.1. General .. 15
3.5.2. Development Samples .. 15

4. PKCS#11 Module .. 16
4.1. Description of PKCS#11 Module .. 16

4.2. Supported PKCS#11 Objects .. 16
4.3. Supported Algorithms .. 17

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

4.4. Supported PKCS#11 Interface Functions .. 19

5. Smart Card Mini Driver Module ... 23
5.1. Smart Card Mini Driver Module Description of Trusted Key PKI .. 23
5.1.1. Basic Information .. 23

5.1.2. Features ... 24
5.2. Supported algorithms .. 24

5.3. Function Implementation .. 25
5.4. Parameters of the Functions ... 27
5.5. Description of Function Calling .. 27

5.5.1. General .. 27
6. Appendix: Terms and Abbreviations .. 28

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

1

1. Software Developer’s Agreement

All Products of Mobile-ID Technologies And Services Joint Stock Company (Mobile-IDTM) including, but not
limited to, evaluation copies, diskettes, CD-ROMs, hardware and documentation, and all future orders, are
subject to the terms of this Agreement. If you do not agree with the terms herein, please return the
evaluation package to us, postage and insurance prepaid, within seven days of their receipt, and we will
reimburse you the cost of the Product, less freight and reasonable handling charges.

- Allowable Use – You may merge and link the Software with other programs for the sole purpose of

protecting those programs in accordance with the usage described in the Developer’s Guide. You

may make archival copies of the Software.

- Prohibited Use – The Software or hardware or any other part of the Product may not be copied,

reengineered, disassembled, decompiled, revised, enhanced or otherwise modified, except as

specifically allowed in item 1. You may not reverse engineer the Software or any part of the product

or attempt to discover the Software’s source code. You may not use the magnetic or optical media

included with the Product for the purposes of transferring or storing data that was not either an

original part of the Product, or a Mobile-IDTM provided enhancement or upgrade to the Product.

- Warranty – Mobile-IDTM warrants that the hardware and Software storage media are substantially

free from significant defects of workmanship or materials for a time period of twelve (12) months

from the date of delivery of the Product to you.

- Breach of Warranty – In the event of breach of this warranty, Mobile-IDTM’s sole obligation is to

replace or repair, at the discretion of Mobile-IDTM, any Product free of charge. Any replaced Product

becomes the property of Mobile-IDTM. Warranty claims must be made in writing to Mobile-IDTM during

the warranty period and within fourteen (14) days after the observation of the defect. All warranty

claims must be accompanied by evidence of the defect that is deemed satisfactory by Mobile-IDTM.

Any Products that you return to Mobile-IDTM, or a Mobile-IDTM authorized distributor, must be sent

with freight and insurance prepaid. EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY

OR REPRESENTATION OF THE PRODUCT, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

- Limitation of Mobile-IDTM’s Liability – Mobile-IDTM’s entire liability to you or any other party for any

cause whatsoever, whether in contract or in tort, including negligence, shall not exceed the price

you paid for the unit of the Product that caused the damages or are the subject of, or indirectly

related to the cause of action. In no event shall Mobile-IDTM be liable for any damages caused by

your failure to meet your obligations, nor for any loss of data, profit or savings, or any other

consequential and incidental damages, even if Mobile-IDTM has been advised of the possibility of

damages, or for any claim by you based on any third-party claim.

- Termination – This Agreement shall terminate if you fail to comply with the terms herein. Items 2,

3, 4 and 5 shall survive any termination of this Agreement.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

2

2. Overview

This chapter describes how to develop Trusted Key PKI applications, including the development interfaces

supported by Trusted Key PKI and how to develop applications based on these interfaces. This chapter
covers the following topics:

- Application development interfaces of Trusted Key PKI

- Development of applications using PC/SC interfaces

- Development of applications using MS CryptoAPI interfaces

- Development of applications using PKCS#11 interfaces

2.1. Application Development Interfaces of Trusted Key PKI

Trusted Key PKI application divide into two categories: development of PKI application and development of
smart card application. In allusion to the interfaces of PKI application, Trusted Key PKI provides two
application interfaces PKCS#11 and CSP for Microsoft CryptoAPI 2.0, these two interfaces respectively
followed PKCS#11 standard of RSA and MS CryptoAPI standard. Meanwhile, they also can be supported by

other software/hardware manufacturers, so Trusted Key PKI can be directly integrated into the application
which accord with these two interfaces without customization. Another category is the PC/SC interface of
smart card application.

The PKI application interface of Trusted Key PKI is based on PC/SC interface, developer can do

customization using one or more interfaces according to the project requirement.

2.2. Development of applications using PC/SC interfaces

The smart card subsystem on the Win32 platform is designed according to the PC/SC specifications (for
information on the specifications, please visit http://www.pcscworkgroup.com). It includes:

- A Smart Card Resource Manager using Win32 system programming interfaces

- A User Interface working with the smart card resource manager

- A set of COM components providing smart card services

The following figure illustrates the architecture of the smart card subsystem under the Win32 platform:

http://www.pcscworkgroup.com/

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

3

It can be seen that, actually, the APIs provided by smart card manufacturers are separated from the
interfaces used by smart card applications. In other words, the smart card applications use the smart card

subset of standard Win32 functions only for accessing smart cards. For smart card manufacturers, the
programming interfaces are unified. The change or update to the interfaces provided by smart card
manufacturers does not affect the upper-level smart card applications.

The Smart Card Resource Manager acts as an intermediate layer. The Smart Card Resource Manager set
of functions includes smart card database query functions, smart card database management functions,
resource manager handle functions, resource manager tool functions, smart card monitoring functions,
smart card and reader accessing functions, and direct card access functions.

2.2.1. Smart Card Database Query Functions

These functions can be used to search for the list of smart card types of a specific system user, the
application service interfaces of a specific smart card, the grouping list of smart card readers, and the list
of all smart card readers of a group.

When using these functions, the search scope can be the whole smart card resource database. Or, you can
refine your search in the resource manager context by specifying some matching information. The function
used for changing the smart card resource manager context is ScardEstablishContext. For some

information, access may be denied for security reasons if you do not specify a specific context.

Function Description

SCardGetProviderId
Obtain the identifier of the interface service of a specific smart card
(GUID).

SCardListCards
Obtain the list of the smart card types accessible to a specific system
user.

SCardListInterfaces
Obtain the unique identifier of the interface service component of a
specific smart card (GUID).

SCardListReaderGroups Obtain the list of the smart card groups.

SCardListReaders Obtain the list of all smart card types of a specific smart card group.

2.2.2. Smart Card Database Management Functions

These functions can be used to manage the smart card resource database and update the location of the
database with a specified resource context.

Function Description

SCardAddReaderToGroup Add a smart card reader to a specific smart card group.

SCardForgetCardType Delete a smart card type.

ScardForgetReader Delete a smart card reader.

ScardForgetReaderGroup Delete a smart card reader group.

ScardIntroduceCardType Add a new smart card type.

ScardIntroduceReader Add a new reader type.

SCardIntroduceReaderGroup Add a new reader group.

SCardRemoveReaderFromGroup Delete a reader type from a specified reader group.

2.2.3. Resource Manager Handle Functions

These functions can be used to create or release the smart card operation context handles used by the

smart card resource manager query or management functions.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

4

Function Description

ScardEstablishContext Create a context handle for accessing the smart card database.

ScardReleaseContext Close the context handle for accessing the smart card database.

2.2.4. Resource Manager Tool Function

The function can be used to release the memory area allocated automatically by the system function, when
flag SCARD_AUTOALLOCATE is specified.

Function Description

ScardFreeMemory
Release the memory area allocated by the system function, when

flag SCARD_AUTOALLOCATE is specified.

2.2.5. Smart Card Monitoring Functions

These functions allow applications to track the current status of the smart card and reader. Most of them
use structure array SCARD_READERSTATE to identify the status of the hardware.

Function Description

SCardLocateCards Look up a smart card matching a specified ATR string.

SCardGetStatusChange
Block execution until the current availability of the cards in a
specific set of readers changes.

SCardCancel
Terminate all outstanding actions within a specific resource
manager context.

2.2.6. Smart Card and Reader Accessing Functions

These functions can be used to connect to and access a specified smart card device, by performing I/O
operations on the smart card using a data block containing control information which starts with structure
SCARD_IO_REQUEST.

Function Description

ScardConnect Connect to a smart card.

ScardReconnect Re-establish a connection to a smart card.

ScardDisconnect Terminate a connection to a smart card.

ScardBegingTransaction
Start exclusive access to a smart card device, and suspend access

to the smart card device by other applications.

ScardStatus Provide the current status of a reader.

ScardTransmit Transmit data with a smart card via T=0 or T=1 protocol.

2.2.7. Direct Card Accessing Functions

The smart card subsystem under the Win32 platform allows applications to access the smart card devices
which do not fully comply with the ISO7816 standards. Thus, Win32 smart card functions allow applications
to send control commands and data to a reader directly. To use these functions, you must define an
identifier for each of the properties you want to control. The Win32 smart card subset also defines some
existing property marks.

Function Description

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

5

ScardControl Provide direct access control over a reader.

ScardGetAttrib Obtain the properties of a reader.

ScardSetAttrib Set the properties of a reader.

For platforms such as Windows 2000 and above, the components of the smart card subsystem are
configured automatically when the operating system is installed.

For more information on the Win32 smart card set of functions, please refer to MSDN documents.

2.3. Development of applications using MS CryptoAPI interfaces

Microsoft CryptoAPI is provided under the Win32 platform for developers to design data encryption and

security applications. The CryptoAPI set of functions involve basic ASN.1 encoding/decoding, hash, data
encryption/decryption, digital certificate management etc. The data encryption/decryption can be achieved
by symmetrical or public key algorithms. All of Microsoft Win32 applications, such as Internet Explorer and
Outlook, and many other third party applications are based on the CryptoAPI interfaces for data
encipherment.

There are three key requirements for secure data transmission over an insecure network: information
concealment, identity authentication and integrity check. In addition to satisfaction of these requirements,
the CryptoAPI interfaces provide standard ASN.1 encoding/decoding, data encryption/decryption, digital

certificate and certificate storage management, Certificate Trust List (CTL) and Certificate Revocation List
(CRL) functions.

2.3.1. Information Concealment

The aim of information concealment is to make sure that the content of transferred information can be
retrieved by authorized people only. Normally, information concealment is achieved by applying some
cryptographic methods. Data encryption algorithms can ensure secure information concealment and
transmission with algorithms converting plain-text data to a set of hash data. It is almost impossible to

deduce plain text from cipher text forcibly without the encryption key for “good” encryption algorithms.
The original data could be ASCII text files, database files or any other kind of files which need to be
transmitted securely. The term “information” means a set of data. The term “plain text” means unencrypted
data. The term “cipher text” means encrypted data.

The cipher text could be transferred through insecure media or networks without compromising its security.
After that, it is restored to be the plain text. This process is demonstrated as follows:

The concepts of data encryption and decryption are fairly simple. To encrypt data, an encryption key is
required. When performing a decryption process, a decryption key is required as well. The encryption key

and the decryption key could be identical or completely different.

The encryption key must be stored safely and securely. When provided to other users, the transfer process
of the key should be secure and reliable. Access control to the decryption key is also necessary, as it can

be used to decrypt all data encrypted with the paired encryption key.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

6

2.3.2. Identity Authentication

The prerequisite of secure communication is that both parties on the two sides of the communication

definitely know the identity of its opposite. Identity authentication is used to verify the true identity of a
person or entity involved in an information exchange. The document used to identify the person or entity
is called a credential. An example of the credential is the passport used to determine the true identity of
the holder by custom officials. The credential is a physical document here.

Identity authentication could also be used to determine if the received data is exactly the sent data or not.
For example, part B may want to verify if the received data is from part A indeed, instead of a pretender.
In this context, the digital signature and verification functions of CryptoAPI can be used.
Because there is no physical link between the data transferred over the network and the user, the credential

used to authenticate the data should also be transferable on the network. The credentials must be issued
by trusted authorities.

Digital certificates, also referred to as the certificate, are such a kind of credential. It is a valid credential
used to authenticate on the network.

The digital certificate is a credential issued by a trusted organization or entity called a Certificate Authority
(CA). It contains an appropriate public key, the certificate subject and user information. CA issues a
certificate only when it has verified the accuracy of user information and a public key’s validity.

The information exchanged between the certificate applicant and the CA can use physical media, such as
floppy disks, for transmission. Typically, this kind of information exchange is achieved through the network.
CA uses trusted service program to handle applicant’s requests and certificate issues.

2.3.3. Integrity Check

All the information transferred by unsafe media faces the risk of being tampered. The seal is used as a tool
for an integrity check in the real world. For example, the unrecoverable package and intact seal could
testify that the item inside is kept unchanged after its departure from the manufacturer.

For the same reason, the information receiver not only needs to verify that the information is from the
correct sender, but also needs to check the information has not changed. To build the integrity check
mechanism, both the information and the verification information for it (which is usually called a hash
value) must be sent together. The information and its verification information could be sent together with
the digital certificate to prove information integrity.

2.3.4. CSP and Encryption Process

CryptoAPI functions use “Cryptographic Service Providers” (CSPs) to perform the data
encryption/decryption and encryption key storage management. All of the CSPs are independent modules.

Theoretically, CSPs should be independent of specific applications, say; each of the applications could use
any CSP. But sometimes, some applications can only interact with some specific CSPs. The relationship
between CSPs and applications is similar to the Windows GDI model. CSPs work like graphic hardware
drivers.

The storage security of the encryption key is laid on the CSP’s implementation. It is not laid on the operating

system. This makes it so that the application can be run under different security environments without
modification.

The communication between application program and encryption module must be controlled strictly so the
application’s security and migration can be guaranteed. Here are three applicable rules:

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

7

- Applications must not access the contents of the encryption key directly because all the encryption

keys are generated within the CSP and applications use a transparent handler to handle it. This

avoids any circumstances where the encryption key is leaked by the application or the related

dynamic linking library and the encryption key is derived from a bad random factor.

- Applications must not specify the detailed implementation of the encryption operation. CSP API

allows the application to choose the algorithm for performing encryption operations and signature

operations. The actual implementation should be performed within the CSP.

- Applications must not process the data in the verification voucher or other identity authentication

data. User’s identity authentication should be achieved by the CSP. This ensures the application

needs to be modified in the future when more identity authentication approaches is applied such as

finger print scanning.

The simplest CSP is comprised of a Win32 Dynamic Linking Library (DLL) and a signature file. Only by
providing the correct signature file, the CSP can be recognized and used by CryptoAPI. CryptoAPI will check
the signatures of CSPs periodically to prevent them being tampered with.

Some CSP modules perform sensitive encryption operations at separate memory spaces by calling local
RPC or hardware driver programs. Placing encryption keys and performing sensitive encryption operations
in separate memory space or hardware can ensure the keys are not tampered with by the applications.

It is not recommended to have an application rely on only one specific CSP. For example, Microsoft Base
Cryptographic Provider provides a 40-bit communication key and 512-bit public key. Applications should
avoid only using these sizes as the length of communication and public key, because once an application
uses another CSP, the key length might change. Good applications should interact with different CSPs.

2.3.5. CSP Context

The first CryptoAPI function called by an application must be CryptAcquireContext. This function returns a
CSP operation handle specifying a certain key container. The key container can be selected specially. Or,

the default container for current user can be used. The function can also be used to create a new key
container.
The CSP module itself has a name and a type. For example, Windows operating system’s default installed
CSP is: Microsoft Base Cryptographic Provider. Its type is PROV_RSA_FULL. Each CSP’s name must be
different, but their types can be same.

When an application calls the CryptoAcquireContext function to get a CSP operation handler, it can specify
the name and type of CSP. When the CSP name and type are specified, only the matching CSP will be
called. After a successfully call, the function returns the CSP operating handler. Application can use the
handler to access the CSP and the key container in the CSP.

2.3.6. CryptoAPI Architecture

- Cryptographic Functions: Used to link and create CSP handle. This set of functions allows

applications to choose a specific CSP module by specifying its name and type.

o Key Generation Functions: Used to create and store an encryption key. Their features

include change of encryption mode, initialization of encryption vector etc.

o Key Exchange Functions: Used to exchange and transmit keys.

- Certificate Encoding/Decoding Functions: Used to encrypt and decrypt data, including support

for data hash operations.

- Certificate Storage Functions: Used to manage digital certificate sets.

- Simplified Message Functions: Used to encrypt and decrypt messages and data, sign them, and

verify the validity of their signature.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

8

- Low Level Message Functions: Actual implementation of the simplified message processing

functions, with more specific controls over message operations.

The prefix of a set of functions has a specific form as follows:

Function Category Prefix Convention

Cryptographic Functions Crypt

Certificate Encoding/Decoding Functions Crypt

Certificate Storage Functions Store

Simplified Message Functions Message

Low Level Message Functions Msg

2.4. Development of applications using PKCS#11 interfaces

Because of the blooming growth of Internet, security requirement for applications has become increasingly
important. The growth of security products also derives the requirement for interacting with applications.

RSA Company worked out the Public Key Cryptographic Standard (PKCS) to meet these requirements.
PKCS#11 standard is one of the PKCS standard set. PKCS#11 standard (also known as “Cryptoki”) is used
to resolve the compatibility problems of interaction between different manufacturers and public key
applications. It defines a uniform programming interface model – Cryptoki tokens. The PK Card PKCS#11

interfaces are compliant with the PKCS#11 standard version 2.20.

Before programming with the PK Card PKCS#11 interfaces, developers should be familiar with the PKCS#11
standards. The standard’s related documents can be downloaded from the RSA website at
http://www.rsa.com/rsalabs/node.asp?id=2133

http://www.rsa.com/rsalabs/node.asp?id=2133

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

9

3. CSP Module

This chapter introduces the CryptoAPI development interfaces supported by Trusted Key PKI. In particular,

the CSP interface names, supported functions and algorithm implementation are described. This chapter
covers the following topics:

- Description of CSP Module

- Supported Algorithms

- Function Implementation

3.1. Description of CSP Module

Trusted Key PKI provides a standard CSP module for seamless integration with CryptoAPI applications. The
CSP module complies with Microsoft Crypto Service Provider programming standard. It can be compatible
with current and future CryptoAPI applications.

3.1.1. Basic Information

- Type: PROV_RSA_FULL - This general type of CSP provides support for digital signature and data

encryption and decryption. All public key operations are processed using RSA algorithms.

- Name：Trusted Key PKI Token CSP v1.0 - The hardware type is SmartCard that has indicated in the

name.

3.1.2. Features

The CSP module of Trusted Key PKI is designed to have the followings features:

- Secure RSA key-pair storage container;

- Different block encryption and hash algorithms;

- Support for RSA operations done by the hardware (up to 2048 bits);

- Support for random number generation by the hardware;

- Support for multi-thread access and multi-device management;

- Support for multi-certificate applications;

- Compliant with PKCS#11 data format;

- Support for dual credentials by allowing two key-pairs (AT_KEYEXCHANGE and AT_SIGNATURE) and

corresponding certificates in a single container;

- Support for Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows 7 and

Windows 2008

- Seamlessly compatible with existing Windows platform applications, such as Office encryption and

decryption, Internet Explorer webpage and SSL website logon, secure emails of Outlook (Express)

etc.

3.2. Supported Algorithms

The following is a list of all cryptographic algorithms supported by the CSP module of the product:

Algorithm
Default Length

(in bits)

Min. Length

(in bits)

Max. Length

(in bits)
Purpose

CALG_RC2 40 8 1024 Encryption and decryption

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

10

Algorithm
Default Length

(in bits)

Min. Length

(in bits)

Max. Length

(in bits)
Purpose

CALG_RC4 40 8 2048

CALG_DES 56 56 56

CALG_3DES 192 192 192

CALG_SHA1 160 160 160

Hash operation

CALG_MD2 128 128 128

CALG_MD5 128 128 128

CALG_SSL3_SH

AMD5
288 288 288

CALG_RSA_SIG

N or

AT_SIGNATURE

1024 1024 2048 Signature verification

CALG_RSA_KEY

X or

AT_KEYEXCHAN

GE

1024 1024 2048
Encryption, decryption and

signature verification

3.3. Function Implementation

The following table summarizes the support and implementation of CSP interface functions. “Not
Implemented” indicates that there is the interface in CSP module, but it is not implemented. “Not
Supported” indicates that there is no that interface in CSP module.

It is reasonable that some functions listed in the table are not supported, because the CSP type is
PROV_RSA_FULL. The “Not Implemented” functions return FALSE and the ErrorCode is set to E_NOTIMPL.
CryptoAPI applications are not required to call these interface functions directly.

Name Description Availability

Connection Functions

CPAcquireContext
Create a context for an

application.
Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

11

Name Description Availability

CPGetProvParam
Return CSP related

information.
Implemented

CPReleaseContext
Release the context created by

CPAcquireContext.
Implemented

CPSetProvParam Set CSP parameter operations. Implemented

Key Generation and Exchange Functions

CPDeriveKey
Generate a session key from a

data hash. The key is unique.
Implemented

CPDestroyKey

Release a key handle. The

handle will be invalid then, and

the key cannot be accessed.

Implemented

CPDuplicateKey Create a copy of a key. Not Supported

CPExportKey
Export a key from a CSP

container.
Implemented

CPGenKey Generate a key or key pair. Implemented

CPGenRandom
Write a random number to a

buffer.
Implemented

CPGetKeyParam
Get the attributes of an

encryption key.
Implemented

CPGetUserKey
Get the persisted key pairs

from a CSP container.
Implemented

CPImportKey
Import a key from a blob to a

CSP container.
Implemented

CPSetKeyParam Set key attributes. Implemented

Data Encryption Functions

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

12

Name Description Availability

CPDecrypt Decrypt the encrypted data. Implemented

CPEncrypt Encrypt the plain text. Implemented

Hashing and Digitally Signing Functions

CPCreateHash Initialize and hash input data. Implemented

CPDestroyHash
Delete the handle of a hashed

object.
Implemented

CPDuplicateHash
Create a copy of a hashed

object.
Not Supported

CPGetHashParam
Get the calculation result of a

hashed object.
Implemented

CPHashData Hash input data. Implemented

CPHashSessionKey

Hash a session key and do not

expose its value to the

application.

Not Implemented

CPSetHashParam
Customize the attributes of a

hashed object.
Implemented

CPSignHash Sign a hashed object. Implemented

CPVerifySignature Verify a digital signature. Implemented

In addition, although the function OffloadModExpo is defined in the CSP standard, it is not supported by
the CSP module for the moment.

3.4. Parameters of the Functions

3.4.1. CPAcquireContext

- dwFlags: It supports the following values: CRYPT_VERIFYCONTEXT, CRYPT_NEWKEYSET,

CRYPT_DELETEKEYSET and CRYPT_SILENT; No CRYPT_MACHINE_KEYSE processing cases.

- pszContainer: It may be NULL or “”, or a string with a reader name (the length of the string should

not exceed MAX_PATH) depending on the value of dwFlags.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

13

3.4.2. CPGetProvParam

- dwParam: It supports the following values: PP_CONTAINER, PP_ENUMALGS, PP_ENUMALGS_EX,

PP_ENUMCONTAINERS, PP_IMPTYPE, PP_NAME, PP_VERSION, PP_UNIQUE_CONTAINER,

PP_PROVTYPE, PP_SIG_KEYSIZE_INC, PP_KEYX_KEYSIZE_INC, PP_KEYSPEC; and does not support

the following values: PP_KEYSET_SEC_DESCR, PP_USE_HARDWARE_RNG etc.

- dwFlags: According to CSP analysis, when the value of dwParam is PP_ENUMALGS or

PP_ENUMALGS_EX, enumeration begins if dwFlags is CRYPT_FIRST; or if the value is 0 or

CRYPT_NEXT, the next is enumerated. When the value of dwParam is PP_ENUMCONTAINERS,

enumeration begins if dwFlags is CRYPT_FIRST (1) or CRYPT_FIRST|CRYPT_NEXT (3); or the next

is enumerated if its value is 0 or CRYPT_NEXT. dwFlags does not support CRYPT_MACHINE_KEYSET.

When dwParam is set to other values, the value of dwFlags is not checked.

3.4.3. CPReleaseContext

- dwFlags: Its value must be zero.

3.4.4. CPSetProvParam

- dwParam: It supports the following values: PP_KEYEXCHANGE_PIN and PP_SIGNATURE_PIN.

Logout if pbData is NULL. It does not support other values.

- dwFlags: Not checked.

3.4.5. CPDeriveKey

- Algid: It supports the following algorithms only: CALG_RC2, CALG_RC4, CALG_DES, and

CALG_3DES.

- dwFlags: It returns an error for the following values: (CRYPT_CREATE_SALT | CRYPT_NO_SALT),

CRYPT_PREGEN and CRYPT_USER_PROTECTED. Not supported for other values.

3.4.6. CPDestroyKey

Further description not required.

3.4.7. CPDuplicateKey

Not supported.

3.4.8. CPExportKey

- dwBlobType: It supports only PUBLICKEYBLOB and SIMPLEBLOB, and does not support

PRIVATEKEYBLOB, OPAQUEKEYBLOB, and PLAINTEXTKEYBLOB etc.

- dwFlags: If dwBlobType is PUBLICKEYBLOB or SIMPLEBLOB, dwFlags must be zero. The value of

this parameter is ignored for other cases.

3.4.9. CPGenKey

- Algid: It supports the following values: CALG_RSA_KEYX, CALG_RSA_SIGN, AT_KEYEXCHANGE,

AT_SIGNATURE, CALG_DES, CALG_RC2, CALG_RC4 and CALG_3DES. CALG_3DES_112 is

supported for the next version.

- dwFlags: Not supported CSP returns an error message: CRYPT_CREATE_SALT, CRYPT_NO_SALT,

or CRYPT_PREGEN. The length of the key to be generated is the first two bytes of this parameter

(the key with default length will be generated for 0). The last two bytes are ignored.

3.4.10. CPGenRandom

Further description not required.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

14

3.4.11. CPGetKeyParam

This function supports only CALG_RSA_KEYX, CALG_RSA_SIGN, AT_KEYEXCHANGE, AT_SIGNATURE,
CALG_DES, CALG_RC2, CALG_RC4 and CALG_3DES key types.

- dwParam: For the key types like CALG_RSA_KEYX, CALG_RSA_SIGN, AT_KEYEXCHANGE and

AT_SIGNATURE, its value could be KP_PERMISSIONS, KP_CERTIFICATE, KP_BLOCKLEN,

KP_KEYLEN or KP_ALGID; for the key type like CALG_RC2, its value could be KP_BLOCKLEN,

KP_EFFECTIVE_KEYLEN, KP_KEYLEN, KP_ALGID or KP_SALT; for the key type like CALG_RC4, its

value could be KP_BLOCKLEN (return value 0), KP_KEYLEN, KP_ALGID or KP_SALT; for the key

types like CALG_3DES and CALG_DES, its value could be KP_BLOCKLEN, KP_KEYLEN or KP_ALGID.

- dwFlags: It must be zero.

3.4.12. CPGetUserKey

- dwParam: It supports the following values: AT_KEYEXCHANGE, AT_SIGNATURE, and

(AT_KEYEXCHANGE | AT_SIGNATURE).

3.4.13. CPImportKey

- pbData: This keyBlob supports SIMPLEBLOB, PUBLICKEYBLOB and PRIVATEKEYBLOB.

- dwFlags: Ignored.

3.4.14. CPSetKeyParam

- dwParam: For the key types like CALG_RC2, CALG_DES and CALG_3DES, its value is KP_IV; for

the key type like CALG_RC2, its value is KP_EFFECTIVE_KEYLEN; for the key types like CALG_RC2

and CALG_RC4, its value is KP_SALT or KP_SALT_EX; for the key types like CALG_RSA_KEYX,

CALG_RSA_SIGN, AT_KEYEXCHANGE and AT_SIGNATURE, its value is KP_CERTIFICATE.

- dwFlags: It must be zero.

3.4.15. CPDecrypt

It supports the following key types: CALG_RSA_KEYX, AT_KEYEXCHANGE, CALG_RC2, CALG_DES,
CALG_3DES and CALG_RC4.

- dwFlags: It must be zero.

3.4.16. CPEncrypt

It supports the following key types: CALG_RSA_KEYX, AT_KEYEXCHANGE, CALG_RC2, CALG_DES,
CALG_3DES and CALG_RC4.

- dwFlags: It must be zero.

3.4.17. CPCreateHash

- Algid: It supports the following algorithms: CALG_MD2, CALG_MD5, CALG_SHA1 and

CALG_SSL3_SHAMD5.

- dwFlags: It must be zero.

3.4.18. CPDestroyHash

Further description not required.

3.4.19. CPDuplicateHash

Not supported.

3.4.20. CPGetHashParam

- dwParam: It supports the following values: HP_ALGID, HP_HASHSIZE and HP_HASHVAL.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

15

- dwFlags: It must be zero.

3.4.21. CPHashData

- dwFlags: It must be zero. It does not support the value of CRYPT_USERDATA.

3.4.22. CPHashSessionKey

Not implemented. It returns FALSE and sets ErrorCode to E_NOTIMPL.

3.4.23. CPSetHashParam

- dwParam: It supports only the value of HP_HASHVAL.

- dwFlags: It must be zero.

3.4.24. CPSignHash

- sDescription: Ignored.

- dwFlags: It supports only the value of CRYPT_NOHASHOID. Other values are ignored.

3.4.25. CPVerifySignature

- sDescription: Ignored.

- dwFlags: It does not support any value.

3.5. Description of Function Calling

3.5.1. General

The function firstly called is CPAcquireContext among all CSP functions. Upper applications call this function
to determine which key container they operate on. Each key container can only store one RSA key pair of
the same type and many session keys at one time. The RSA key pair is an object that could be persisted,
while the session keys exist only at runtime. If an application requests the access to the private key in the

container, the CSP module would require authentication to the user. But if this dialog box is not expected,
set a flag, CRYPT_SILENT. However, doing so will cause that all operations with access to the private key
and protected data fail, because the product does not support the use of CPSetProvParam for setting user
identification.

3.5.2. Development Samples

Developers could find some sample programs developed with the CryptoAPI interfaces and compile and
debug them in SDK package under Samples\CryptAPI. Some samples may require Platform SDK from
Microsoft.

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

16

4. PKCS#11 Module

This chapter introduces the PKCS#11 interface development. In particular, the PKCS#11 interface names,

supported functions and algorithm implementation are described. This chapter covers the following topics:
- Description of PKCS#11 Module

- Supported PKCS#11 Objects

- Supported Algorithms

- Supported PKCS#11 Interface Functions

4.1. Description of PKCS#11 Module

The PKCS#11 interfaces are provided in a Win32 dynamic linking library (DLL), which can be accessed
through a static (using .lib file) or dynamic link. The following is the files relating to the PKCS#11 interfaces:

File SDK Path

pkcs11.h \Include\pkcs11 (provided by RSA)

pkcs11f.h \Include\pkcs11 (provided by RSA)

pkcs11t.h \Include\pkcs11 (provided by RSA)

cryptoki.h \Include\pkcs11 (provided by RSA)

cryptoki_ext.h \Include\pkcs11 (extension algorithms and return values)

cryptoki_win32.h
\Include\pkcs11 (type definition of the first 3 header files required for

Windows platforms)

cryptoki_linux.h
\Include\pkcs11 (type definition of the first 3 header files required for Linux

platforms)

auxiliary.h \Include\pkcs11 (definition of extension functions)

trustedkey_csp11_v1.lib \Lib (PKCS#11 interface library)

trustedkey_csp11_v1.dll is the core library file for the PK card. It is located under the system directory.
The library implements all interface functions defined in RSA PKCS#11 standard. If developers need to use
these interfaces and all interfaces and definitions developers wish to access are compliant with the
PKCS#11 standard, the file cryptoki_win32.h (for Windows platforms) or cryptoki_linux.h (for Linux

platforms) must be included in the project. If the extension functions and algorithms are to be used, simply
get the file cryptoki_ext involved. You can include the library in your project and call it implicitly, if you do
not want to call the library by LoadLibrary.

4.2. Supported PKCS#11 Objects

Trusted Key PKI PKCS#11 module supports creating and using the following objects:

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

17

Class Object Description

CKO_DATA
Object defined by application. Object’s structure is decided by the

application. The data rendering is also handled by the application.

CKO_SECRET_KEY Key of symmetry encryption algorithm.

CKO_CERTIFICATE X.509 digital certificate object.

CKO_PUBLIC_KEY RSA public key object.

CKO_PRIVATE_KEY RSA private key object.

CKO_MECHANISM Algorithm object.

All the objects can be divided into groups according to the length of their lifetime. One group is a

permanently stored object. This group of objects will be stored in a secure memory area until being deleted
by the application. Another group includes session objects. This group of objects is only used for temporary
communication sessions. Once the session is finished, the object will be deleted. The property CKA_TOKEN
decides the lifetime of the object, which has a Boolean value. All the objects have this property. Developers
need to establish a storage policy for objects according to the memory size of the product. Only the

significant objects can be stored within the internal memory of the product.

Besides lifetime difference, the PKCS#11 objects also have a difference in accessing privileges. All the
objects can be divided into two types according to their different accessing privilege. One type is public
object with this type of object being accessed by any user. The other type is private object which can only

be accessed by users who have passed identity verification. The property CKA_PRIVATE decides the access
type, which has a Boolean value. All objects have this property. Application can decide one object is public
or private by its actual usage. Importantly, the private memory area and the public memory area are all
limited to certain capacity, and independent of each other. These two storage zones are independent.

Applications must balance their size appropriately. Once the size is determined during the initialization of
the product, it could not be changed later.

4.3. Supported Algorithms

The following is a list of all cryptographic algorithms supported by the PKCS#11 module of the product:

Algorithm
Encryption/

Decryption

Signature

Check
Hash

Key-pair

Generation
Package

CKM_RSA_PKCS_KEY_PAIR

_GEN
 √

CKM_RSA_PKCS √ √ √

CKM_MD2_RSA_PKCS √ √ √

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

18

Algorithm
Encryption/

Decryption

Signature

Check
Hash

Key-pair
Generation

Package

CKM_MD5_RSA_PKCS √ √ √

CKM_SHA1_RSA_PKCS √ √ √

CKM_RC2_KEY_GEN √

CKM_RC2_ECB √

CKM_RC2_CBC √

CKM_RC4_KEY_GEN √

CKM_RC4 √

CKM_DES_KEY_GEN √

CKM_DES_ECB √ √

CKM_DES_CBC √ √

CKM_DES_OFB64 √

CKM_DES_OFB8 √

CKM_DES_CFB64 √

CKM_DES_CFB8 √

CKM_DES3_KEY_GEN √

CKM_DES3_ECB √ √

CKM_DES3_CBC √ √

CKM_MD2 √

CKM_MD5 √

CKM_SHA_1 √

CKM_SHA224 √

CKM_SHA256 √

CKM_SHA384 √

CKM_SHA512 √

The following list provides the key length supported by the PKCS#11 module of the product:

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

19

Algorithm Key Length

CKM_RSA_KEY_PAIR_GEN 1024,2048bits

CKM_RC2_KEY_GEN 1-128bytes

CKM_RC4_KEY_GEN 1-256bytes

CKM_DES_KEY_GEN 8bytes

CKM_DES3_KEY_GEN 24bytes

CKM_GENERIC_SECRET_KEY_GEN 1-256bytes

4.4. Supported PKCS#11 Interface Functions

PKCS#11 is a universal standard for the Cryptoki hardware. The implementation of PKCS#11 of different

hardware manufacturers may vary.

Some of the interfaces defined in the PKCS#11 standards are not implemented by the product. Once they
are called, a value CKR_FUNCTION_NOT_SUPPORT will be returned.

Note: The product is the “token” mentioned in the PKCS#11 standards.

The following is a list of all interfaces defined in the PKCS#11 2.11 standards:

Name Description Availability

Basic Functions

C_Initialize This function initializes the library. It must

be called before calling other functions with
the only exception being the
C_GetFunctionList function.

Implemented

C_Finalize This function should be called at the end of

access.
Implemented

C_GetInfo Get the information of cryptoki library. Implemented

C_GetFunctionList Get the function pointer list of the library. Implemented

Slot and Token Management Functions

C_GetSlotList Get slot list. Implemented

C_GetSlotInfo Get slot information. Implemented

C_GetTokenInfo Get token information in the slot. Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

20

Name Description Availability

C_WaitForSlotEvent Wait for slot event, such as token is

inserted or removed.
Implemented

C_GetMechanismList Get the library’s supported algorithm list. Implemented

C_GetMechanismInfo Get the detail information of the algorithm. Implemented

C_InitToken Initialize a token. Implemented

C_InitPIN Initialize USER PIN. Implemented

C_SetPIN Set current user PIN. Implemented

Session Management Functions

C_OpenSession Open a session between application and
token.

Implemented

C_CloseSession Close session. Implemented

C_CloseAllSessions Close all the opened session. Implemented

C_GetSessionInfo Get session information. Implemented

C_GetOperationState Get current operation state. Not Implemented

C_SetOperationState Use state returned by C_GetOperationState

to resume the library’s operating state.
Not Implemented

C_Login Log into the token. Implemented

C_Logout Log out from the token. Implemented

Object Management Functions

C_CreateObject Create new Cryptoki object. Implemented

C_CopyObject Create the copy of the object. Not Implemented

C_DestroyObject Destroy the object. Implemented

C_GetObjectSize Get the size of the object. Not Implemented

C_GetAttributeValue Get the attributes of the object. Implemented

C_SetAttributeValue Set the attributes of the object. Implemented

C_FindObjectsInit Initialize an object finding operation. Implemented

C_FindObjects Perform an object finding operation. Implemented

C_FindObjectsFinal Finish an object finding operation. Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

21

Name Description Availability

Encryption Functions

C_EncryptInit Initialize an encryption operation. Implemented

C_Encrypt Encrypt the data. Implemented

C_EncryptUpdate Continue encrypting data. Implemented

C_EncryptFinal End a data encryption operation. Implemented

Decryption Functions

C_DecryptInit Initialize a decryption operation. Implemented

C_Decrypt Decrypt the data. Implemented

C_DecryptUpdate Continue decrypting data. Implemented

C_DecryptFinal End a data decryption operation. Implemented

Digest Functions

C_DigestInit Initialize a digest operation. Implemented

C_Digest Input data for digesting. Implemented

C_DigestUpdate Continue digesting data. Implemented

C_DigestKey Continue digesting key. Not Implemented

C_DigestFinal End a data digest operation. Implemented

Signature Functions

C_SignInit Initialize a signature operation. Implemented

C_Sign Signature operation. Implemented

C_SignUpdate Update signature operation. Implemented

C_SignFinal Finalize signature operation. Implemented

C_SignRecoverInit Initialize a data recoverable signature
operation.

Implemented

C_SignRecover Recover signature operation. Implemented

Signature Verification Functions

C_VerifyInit Initialize a signature verification operation. Implemented

C_Verify Verification operation. Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

22

Name Description Availability

C_VerifyUpdate Update verification operation. Implemented

C_VerifyFinal Finalize verification operation. Implemented

C_VerifyRecoverInit Initialize a data recoverable verification

operation.
Implemented

C_VerifyRecover Recover verification operation. Implemented

Digest Encryption Functions

C_DigestEncryptUpdate Continue a digest and encryption operation. Not Implemented

C_DecryptDigestUpdate Continue a digest and decryption operation. Not Implemented

C_SignEncryptUpdate Continue a signature and encryption
operation.

Not Implemented

C_DecryptVerifyUpdate Continue a signature and decryption

operation.

Not Implemented

Key Management Functions

C_GenerateKey Generate the key and create the new key

object.
Implemented

C_GenerateKeyPair Generate the key pair and create the new

public key object.
Implemented

C_DeriveKey Derive a private key or encryption key. Not Implemented

C_WrapKey Wrap a private key or encryption key. Implemented

C_UnwrapKey Un-wrap a private key or encryption key. Implemented

Random Number Generation Functions

C_SeedRandom Add a seed to the random generator. Implemented

C_GenerateRandom Generate a random number. Implemented

Parallel Management Functions

C_GetFunctionStatus Already been deprecated. Not Implemented

C_CancelFunction Already been deprecated. Not Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

23

5. Smart Card Mini Driver Module

This chapter introduces the CryptoAPI interface development. In particular, the Smart Card Mini Driver
interface names, supported functions and algorithm implementation are described. This chapter covers the

following topics:
- Description of Smart Card Mini Driver Module

- Supported Algorithms

- Supported Smart Card Mini Driver Interface Functions

5.1. Smart Card Mini Driver Module Description of Trusted Key PKI

Smart Card Mini Driver Interface is at the under layer of Microsoft Base Smart Card Crypto Provider and
Microsoft Smart Card Key Storage Provider. It provide encryption algorithm and file storage function.

 Trusted Key PKI provides standard Smart Card Mini Driver Module to implement Microsoft Smart Card
Base Cryptographic Service Provider (CSP) and Cryptography API: Next Generation (CNG) Key Storage
Provider (KSP). Smart Card Mini Driver Module of Trusted Key PKI fully comply with Microsoft Windows
Smart Card Mini Driver Coding Standard, it is compatible with existing and future Crypto API application.

The procedure flow of Smart Card Mini Deriver is:

5.1.1. Basic Information

Supported Version：V4、V5、V6

V4 supports CSP basic function, one user PIN and one administrator PIN
V5 supports AT_ECDHE_* algorithm
V6 supports that one PIN binding one container

V7 supports secure key injection

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

24

Name: Microsoft Base Smart Card Crypto Provider / Microsoft Smart Card Key Storage Provider
Registration Mechanism:

Windows XP and
Windows 2003

Windows Vista/2008/7

CAPI-1

Registry file

Must set “Crypto
Provider” registry
key.

Manifest

Must set “Crypto Provider” registry key.

CNG Not supported
Manifest

Must set “Smart Card Key Storage Provider” key.

"Crypto Provider"="Microsoft Base Smart Card Crypto Provider"
"Smart Card Key Storage Provider"="Microsoft Smart Card Key Storage Provider"

5.1.2. Features

Smart Card Mini Driver of Trusted Key PKI has following features:

- Provide secure container for RSA/ECC key pair

- Support RSA2048 in hardware

- Support ECC256 in hardware

- Support creation and deletion of binary file

- Support hardware random number generation

- Support multi-thread access and multi-device management

- Support multi-certificate application

- Compatible with PKCS#11 data format

- Support dual certification – one container includes two key pairs (AT_KEYEXCHANGE and

AT_SIGNATURE) and corresponding certificates

- Support Windows2000 and above (Windows2000/XP/Server 2003 need to install the MS patch

KB909520)

- Seamless compatible with Windows application, like Office Encryption/Decryption, Web logon of IE

and SSL logon, Outlook (Express) security e-mail, Smart Card Logon and MS VPN connection, etc.

5.2. Supported algorithms

The following is a list of all cryptographic algorithms supported by the Smart Card Mini Driver module of
the product:

Algorithm
Default

Length (bit)

Min. Length

(bit)

Max. Length

(bit)
Purpose

AT_ECDSA_P256 256 256 256 Signature

AT_SIGNATURE 1024 1024 2048 Signature verification

AT_KEYEXCHANGE 1024 1024 2048
Encryption, decryption
and signature verification

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

25

5.3. Function Implementation

The following table summarizes the support and implementation of Smart Card Mini Driver interface

functions. “Not Implemented” indicates that there is the interface in CSP module, but it is not implemented.
“Not Supported” indicates that there is no that interface in CSP module. All the functions with “not
implemented” return SCARD_E_UNSUPPORTED_FEATURE.

Name Description Availability

Connection Functions

CardAcquireContext Create a context for the application Implemented

CardDeleteContext
Release the context created by

CardDeleteContext
Implemented

CardGetProperty
Get the basic property of Smart Card

Mini Driver
Implemented

CardSetProperty
Set the basic property of Smart Card

Mini Driver
Implemented

PIN Management Function

CardGetChallenge Get random number Implemented

CardAuthenticatePin Verify user PIN Implemented

CardAuthenticateChallenge Verify Administrator PIN externally Implemented

CardDeauthenticate
Invalidate the PIN permissions of
Administrator or user

Implemented

CardUnblockPin Unlock user PIN. Implemented

CardChangeAuthenticator Change PIN Implemented

CardAuthenticateEx Verify PIN Implemented

CardChangeAuthenticatorEx Change PIN Implemented

CardDeauthenticateEx Invalidate appointed PIN permissions Implemented

CardGetChallengeEx Get random number Implemented

File System Management Function

CardCreateDirectory Create a directory Implemented

CardDeleteDirectory Delete a directory Implemented

CardReadFile Read file content Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

26

Name Description Availability

CardCreateFile Create a file Implemented

CardGetFileInfo Get file information Implemented

CardWriteFile Write file content Implemented

CardDeleteFile Delete a file Implemented

CardEnumFiles Enumerate file name Implemented

CardQueryFreeSpace Get key space Implemented

Container Management Function

CardCreateContainer Create a container Implemented

CardCreateContainerEx
Create a container which has bound
the PIN

Implemented

CardDeleteContainer Delete a container Implemented

CardGetContainerInfo Get container information Implemented

CardGetContainerProperty Get container property Implemented

CardSetContainerProperty Set container property Not Implemented

CardQueryKeySizes Get supported ECC/RSA length Implemented

CardQueryCapabilities
Estimate whether Mini Driver support
creating key pair

Implemented

Asymmetric Key Operation

CardRSADecrypt RSA decryption Implemented

CardSignData RSA/ECC signature Implemented

ECDH Algorithm Function

CardConstructDHAgreement Create diffie hellman protocol Implemented

CardDestroyDHAgreement Release diffie hellman protocol Implemented

CardDeriveKey
Generate session key based on

diffie hellman protocol
Implemented

Secure Key Injection Function

MDImportSessionKey Not Implemented

MDEncryptData Not Implemented

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

27

Name Description Availability

CardImportSessionKey Not Implemented

CardGetSharedKeyHandle Not Implemented

CardGetAlgorithmProperty Not Implemented

CardGetKeyProperty Not Implemented

CardSetKeyProperty Not Implemented

CardDestroyKey Not Implemented

CardProcessEncryptedData Not Implemented

5.4. Parameters of the Functions

For detail of parameters specification, please refer to:
http://www.microsoft.com/whdc/device/input/smartcard/sc-minidriver.mspx

5.5. Description of Function Calling

5.5.1. General

Smart Card Mini Driver interface functions are called by Microsoft Base Smart Card Crypto Provider and
Microsoft Smart Card Key Storage Provider, it is not necessary to call the Smart Card Mini Driver interface
directly. The way to call Microsoft Base Smart Card Crypto Provider and Microsoft Smart Card Key Storage
Provider is the same as other CSP such as the one developed by user itself.

If the user wants to import asymmetric key pair through Base CSP externally, then user need to change
the configuration of Base CSP, open registry list, find
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\Microsoft Base Smart Card

Crypto Provider, change the value of AllowPrivateExchangeKeyImport and AllowPrivateSignatureKeyImport
to 1.

http://www.microsoft.com/whdc/device/input/smartcard/sc-minidriver.mspx

MOBILE-ID TECHNOLOGIES AND SERVICES JOINT STOCK COMPANY

Level 9, Thuy Loi 4 Building, 286-288 Nguyen Xi Street, Ward 13, Binh Thanh

District, Ho Chi Minh City, Vietnam

Tel: (84-28) 3622 2982 - Fax: (84-28) 3622 2983 – Hotline: 1900 6884

info@mobile-id.vn – https://www.mobile-id.vn

28

6. Appendix: Terms and Abbreviations

Entry Description

Trusted Key PKI

A smart card based token with FIPS proved for PKI applications,
introduced by Mobile-ID Technologies And Services Joint Stock
Company. It is designed for PKI application systems.

CryptoAPI Interface (CAPI)

An interface used for cryptography operations, provided by

Microsoft. It provides cryptographic algorithm encapsulation of

equipment irrelevant or implemented by software. With this

interface, it is easy to develop PKI applications for data

encryption/decryption, authentication and signature on Windows

platforms.

Smart Card Minidriver Interface

An interface used for cryptography operations, provided by

Microsoft. It provides cryptographic algorithm encapsulation of

equipment irrelevant or implemented by software for Microsoft Base

Smart Card Crypto Provider and Microsoft Smart Card Key Storage

Provider.

PKCS#11 Interface

A programming interface introduced by RSA. It abstracts the

cryptographic device into a universal logic view - Cryptographic

Token, for use by upper-level applications, providing device

independency and a manner of resource sharing.

